For centuries, surgeons operated using large incisions to gain a full view of the organ they needed to treat, to insert the necessary surgical instruments, and to perform the surgery. Recovery time for such taxing procedures is extensive and post-operative complications are a common occurrence. The introduction of minimally invasive surgery (MIS), also known as keyhole surgery or laparoscopy, has drastically improved patient outcomes. Using smaller incisions, the risk of infection can be reduced, and recovery can be accelerated. Many studies have shown that MIS results in decreased post-operative hospital stays, quicker return to the workforce, decreased pain and better immune function.
However, there are several drawbacks to MIS due to the technical and mechanical nature of the equipment. These limitations make MIS procedures more challenging, reduce their efficiency and increase operating time.
Computer-assisted surgery was developed to overcome the limitations of MIS and to expand its benefits. Computer-assisted surgery is classified as a type of MIS and involves the use of robotic systems to execute surgical procedures. Although robotic surgery has technically been around for over thirty years, it has not been widely implemented in medical settings. Dozens of new companies have entered this market in the last decade, however, and the market is currently in a rapid state of expansion. Within the last five years, investor interest in surgical robots has soared. Since 2016, investments increased over 300% to reach a total investment of $1.36 billion to date.
History of surgical robots: An overview
Source: IDTechEx Report "Innovations in Robotic Surgery 2020-2030"
The terms "surgical robot" and "robotic surgery" are often used interchangeably but they have different meanings, surgical robots are a subset of robotic surgery. This report breaks down the robotic surgery market into four main sectors:
• Surgical robots for general surgery
• Robotic catheter and endoscope navigation
• Robotic positioning of surgical tools
• Robotic systems for intra-operative camera manipulation
This report also includes chapters on the use of artificial intelligence (AI) and haptic feedback in robotic surgery today.
Sectors covered in this report
Source: IDTechEx Report "Innovations in Robotic Surgery 2020-2030"
Surgical Robots for General Surgery
General surgery (eg: abdominal, thoracic, colorectal, gynaecological, urologic) is perhaps the best-known application of surgical robots. Although Intuitive Surgical has been the uncontested market leader in surgical robotics for over 20 years , the situation could be about to change. Intuitive's dominance in the surgical robotics market has forced newcomers to diversify, as companies are keen to set themselves apart from the da Vinci system. Approaches include alternative design, form factor, or approach to surgery. Today, the market pioneer is faced with competition from more than a dozen newcomers that are exploring various configurations and approaches to robotic-assisted surgery.
Robotic Catheter Navigation
Medical instruments like catheters are widely used to conduct surgical interventions within the heart or blood vessels. Catheter ablation procedures require a wire to be pushed manually and thus surgeons are exposed to harmful X-ray radiation. To address this issue, robotic systems for catheter navigation have been developed to eliminate the need to manually manipulate the wire. Instead, surgeons can control the catheter remotely, thereby reducing the level of radiation inflicted on them. Unlike many surgical robots, which have yet to prove their clinical value, robotic catheter navigation systems have been proven to improve clinical outcomes. Robotic catheter navigation systems increase the speed and efficiency of the intervention and can thus reduce the need for follow-up procedures. More importantly, they lighten the workload of over-burdened clinical staff - thereby addressing one of the key challenges in healthcare today. High costs are often an issue with robotic surgery systems, but robotic navigation platforms are much cheaper than most surgical robots and are hence are more cost-effective than most of their general surgery counterparts.
Robotic Positioning of Surgical Tools
Surgical robots are increasingly being used to facilitate and optimise the positioning of instruments and tools during image-guided surgery. Robotic surgical tool positioning systems are advantageous for any procedure that must be conducted with high precision. These systems facilitate operating room workflows by ensuring that surgical tools are inserted at the appropriate angle and depth. Often, humans cannot achieve the level of precision required in surgical procedures due to involuntary tremors. Robotic positioning of surgical tools have proven value in orthopaedic and neurosurgery procedures and are being explored as means to improve laser therapy, tumour resection and biopsy outcomes as well.
Robotic systems for Intra-operative Camera manipulation
Laparoscopy and endoscopy have revolutionized surgical interventions as they are minimally invasive and thus enable much faster patient recovery. However, they are challenging to perform as surgeons can only see their actions within the patient on a monitor. The camera providing a visual of the surgical site is held by a human assistant and the video is often shaky as a result. Robotic systems for intra-operative camera manipulation are crucial in surgical and endoscopy procedures as they provide a stable view of the operating area and can be controlled by the surgeons themselves with minimal disturbance to their workflow. These systems negate the need for an assistant, which reduces the cost of surgery.
Markets and Forecasts
Innovations in Robotic Surgery 2020-2030: Technologies, Players & Markets explores emerging technologies, highlights key players and provides market analysis for each sector of robotic surgery. Historical revenue data (2015-2019) and forecasts predicting the size of each sector in the next decade (2020-2030) are included in the report. The report also discusses market drivers, constraints, and investments/funding in each sector (2014-2019).