< Key Hightlight >
Traditional electronic systems have an inherently rigid form factor. Developing flexibility and related properties such as stretchability into these systems enables electronics to be added in a wider range of applications and products where flexibility is essential. Using technologies such as printed electronics, new form factors and new products can be developed.
Electronics meets healthcare
There is a general market trend across all of healthcare towards increasing digitization. Digital health solutions such as telehealth, telemedicine and its subset, remote patient monitoring, bring much needed decentralization (keeping patients out of hospitals) while still maintaining close contact with patients. Moving from discrete monitoring at each doctor's visit to continuous monitoring via connected medical devices such as wearables can provide improved diagnostic capability and the opportunity to deliver preventative care. Overall, the solution that digital health brings to traditional healthcare is decreased costs while still maintaining a high level of care.
Traditionally, patient compliance to medical interventions is low, as is the long-term use of wearable devices in general. Remote patient monitoring requires a high level of adherence by the patient, so options where the tests can happen automatically as the patient goes about their normal life are preferable. Ideas such as "fit and forget" or "always-on monitoring" are favorable within this scenario. Devices which are fitted by a doctor and stay in place, or part of a person's daily life, can be options to achieve this. These devices need to interface with the body, be safe and comfortable in long term wear, and not cause the patient any unnecessary burden in order to maximize compliance.
Flexible (& printed) electronics as a principle fits very well with these themes, providing flexible, foldable, stretchable, conformal, lightweight options for key device components. This synergy and narrative works best with products such as skin patches, smart clothing and other remote patient monitoring or treatment devices that interface with the skin or other tissues.
Examples of flexible electronics in healthcare covered within this report.
Electronic skin patches
Electronic skin patches are wearable devices with electronic components that are attached to the skin. While skin patches may come in the form of rigid electronics mounted on an adhesive patch, increased flexibility of the electronics offers a clear advantage to achieving "fit and forget" goals. This report draws on IDTechEx's expertise in electronic skin patches – we have examined over 100 companies in 26 application areas to bring you the most promising opportunities in healthcare for flexible electronics applied to the skin patch form factor. Areas covered in this report include cardiovascular monitoring, remote patient monitoring (both in- and out-patient), diabetes management, temperature sensing, and motion sensing.
Smart clothing (using e-textiles)
E-textiles are products that involve both electronic and textile components. Humans are in contact with textiles for 98% of our lives, and thus textiles (clothing, bedsheets, etc.) can be an excellent interface from which sensors and other electronic components can interact with the body. As such, biometric monitoring through textiles presents a significant opportunity in achieving always-on monitoring. IDTechEx have been researched e-textiles for over a decade and have followed the market's shift in focus from sports to healthcare. E-textiles can be a highly convenient and comfortable solution to patient monitoring, though technical and regulatory challenges remain.
In vitro diagnostics (electrochemical test strips)
There is a trend to decentralize healthcare, and IDTechEx have been following the movement of diagnostics from centralized laboratories to the point-of-care. In this area, the glucose test strip is one of the greatest successes of printed electronics in enabling low-cost manufacturing. Here, flexibility is a byproduct of the manufacturing method. Though the test strip market is in decline due to the emergence of technologies for continuous monitoring, it still presents as a billion-dollar market.
Smart packaging
One of the prominent applications discussed for printed and flexible electronics has been in smart packaging and logistics, an area that IDTechEx has covered for the past 8 years. Despite the value that smart packaging brings to supply chain management, there has been limited application in healthcare. When applied to blister packs, flexible electronics can be used to track a patient's adherence to their medication, though issues around risk and infrastructure remain.
In addition to the breakdown by product category, this report also examines the technologies that are enabling flexible electronics in healthcare, based on over 15 years of IDTechEx expertise in printed and flexible electronics. Areas of focus include:
- Flexible substrates
- Conductive inks
- Flexible circuit boards
- Flexible sensors
- Components in e-textiles