QUICK MENU

오늘 본 상품

  • 제품명이 노출되는 영역입니다.
    Supercapac
    US$ 5,995
1 /
TOP
Deeper Insights Lead to Success
We are striving to secure our standing as an Intelligence Information Platform that supports clients’
decision-making and promoting direction of future business, with providing trustful global market insights.
2020-05-01 Supercapacitor Materials and Formats 2020-2040
Vertical lnadustry/Wood, Plastics & Textiles
IDTechEx

License Type

Electronic(1-5 users)
US$ 5,995
Electronic and 1 Hardcopy(1-5 users)
US$ 6,495
Electronic(6-10 users)
US$ 8,495
Electronic and 1 Hardcopy(6-10 users)
US$ 8,995

< Key Hightlight >

New IDTechEx report, "Supercapacitor Materials and Formats 2020-2040" reveals why Toyota, Volkswagen, the $100bn CRRC in China and other giants now see supercapacitors as a potentially large market and key enabling technology in their cars, buses and so on. Materials will control supercapacitor performance and cost.
 
Supercapacitors will have formats such as stretchable, where batteries struggle. They also meet batteries head on, promising energy density of lithium-ion batteries 12 years ago with most other parameters magnitudes better than even future batteries. Imagine a supercapacitor bus, that only needs to charge at the depot, doing it in seconds with no end-of-life disposal costs.
 
The trick is pivoting of supercapacitor research from flammable carcinogenic liquids touching burnt coconut shells to such things as solid ionogels matched to graphene and carbon nanotube composites. That takes life beyond the current three times that of a lithium-ion battery to much more. An electric vehicle will have energy storage taking no weight or space because it has supercapacitor smart vehicle bodywork by Lamborghini, Geely, MIT, Imperial College London, a Japanese electronics giant and others optimising, integrating and shaping the new materials. Add non-toxic flexible and stretchable medical implants and patches, some using supercapacitor feedstock cut to shape as needed.
 
Only this report appraises and forecasts those advanced materials in supercapacitors and derivatives. Analysis by multi-lingual, PhD level IDTechEx staff includes much from 2020. See percentage of new research on hierarchical vs exohedral electrodes, graphene vs CNT vs metal-oxide-framework MOF electrodes. Understand challenges and opportunities of battery-supercapacitor-hybrid BSH vs pseudocapacitors, scope for increasing energy density, trade-offs of other parameters, with appraisal from university professors and IDTechEx experts deeply involved.
 
This 220 page report is sister to the IDTechEx report, "Supercapacitors: Applications, Players, Markets 2020-2040". It covers present and future and how new materials and formats will create large new business. The 19 page executive summary and conclusions is sufficient in itself for those in a hurry - mainly new infograms, technology comparisons, summary of commercially significant research, 20 year technology roadmap, materials value market forecast and gaps in the materials market.
 
The introduction explains cost and weight split, power density and frequency compromises to increase energy density. Understand the toolkit available in supercapacitor, BSH and pseudocapacitance optimisation, research methodologies, parameters to be improved to create large business and production processes emerging.
 
Chapter 3 focusses on how pure supercapacitor energy density is being improved by both hierarchical and exohedral electrodes. Chapter 4 does that for the less commercially-impactful improvement of power density. Chapter 5 explains the strongly-desired improvement of self-leakage and, given the huge increase in research on the subject, Chapter 6 is a pseudocapacitance deep dive.
 
Chapter 7 goes into the supercapacitor electrolytes vitally important in any of the above options. Many charts compare parameters and formulations, solvent-solute vs ionic, aqueous vs non-aqueous, toxicology, adoption trends and more. Chapter 8 covers graphene being applied in its many variants of composite, morphology and purity, including some in production supercapacitors. Chapter 9 extends this to MOF and other 2D materials in supercapacitors and Chapter 10 does the same for carbon nanotubes all with reasons why, progress and plans. Chapter 10 takes us to carbon nanofibers CNF, aerogel and hydrogel often prioritising load-bearing, flexible and other formats over energy density.
 
Chapter 11 focuses just on supercapacitor vehicle bodywork, tires and cables and Chapter 12 on materials for flexible, transparent, wearable, stretchable, paper and micro forms. The appendix gives materials used in commercial supercapacitors 2010-2020. IDTechEx report, "Supercapacitor Materials and Formats 2020-2040" references the best research throughout. Advanced materials companies can see substantial new opportunities for their capabilities.
 

상품 선택옵션 1 개, 추가옵션 0 개

배송비결제 주문시 결제
Inquiry

관련 보고서 추천