A typical commercial battery cell usually consists of cathode, anode, separator and electrolyte. One of the most successful commercial batteries we have so far is based on lithium-ion technology, which has been commercialized since 1991. However, their worldwide success and diffusion in consumer electronics and electric vehicles (EV) cannot hide their limitations in terms of safety, performance, and form factor due to the underlying technology.
Illustration of a typical cell
Most widely used commercial lithium-ion technologies employ liquid electrolyte, with lithium salts such as LiPF6, LiBF4 or LiClO4 in an organic solvent. However, the solid electrolyte interface (SEI), which is a result of the de-composition of the electrolyte at the negative electrode, limits the effective conductance. Furthermore, liquid electrolyte needs expensive membranes to separate the cathode and anode, as well as an impermeable casing to avoid leakage. Therefore, the size and design freedom for these batteries are constrained. Furthermore, liquid electrolytes have safety and health issues as they use flammable and corrosive liquids. Samsung's Firegate and dozens of EV combustions have particularly highlighted the risks that even large companies incur when flammable liquid electrolytes are used.
Solid-state electrolytes have the potential to address all of those aspects, particularly in the electric vehicle, wearable, and drone markets. Their first application was in the 70s as primary batteries for pacemakers, where a sheet of Li metal is placed in contact with solid iodine. The two materials behave like a short-circuited cell and their reaction leads to the formation of a lithium iodide (LiI) layer at their interface. After the LiI layer has formed, a very small, constant current can still flow from the lithium anode to the iodine cathode for several years. Fast forward to 2011, and researchers from Toyota and the Tokyo Institute of Technology have claimed the discovery of a sulphide-based material that has the same ionic conductivity of a liquid electrolyte, something unthinkable up to a decade ago. Five years later, they were able to double that value, thus making solid-state electrolytes appealing also for high power applications and fast charging. Until recently, we have heard multiple plans that solid-state batteries will be deployed in EVs in a few years' time. These interests and developments have fuelled research and investments into new categories of materials and energy storage systems that can triple current Li-ion energy densities.
In solid-state batteries, both the electrodes and the electrolytes are solid state. Solid-state electrolyte normally behaves as the separator as well, allowing downscaling due to the elimination of certain components (e.g., separator and casing). Therefore, they can potentially be made thinner, flexible, and contain more energy per unit weight than conventional Li-ion. In addition, the removal of liquid electrolytes can be an avenue for safer, long-lasting batteries as they are more resistant to changes in temperature and physical damages occurred during usage. Solid state batteries can handle more charge/discharge cycles before degradation, promising a longer lifetime.
With a battery market currently dominated by Asian companies, European and US firms are striving to win this arms race that might, in their view, shift added value away from Japan, China, and South Korea. Different material selections and change of manufacturing procedures show an indication of reshuffle of the battery supply chain. From both technology and business point of view, development of solid-state battery has formed part of the next generation battery strategy. It has become a global game with regional interests and governmental supports.
In addition, with the rapid growth of the EV market and regulation requirement for longer range, battery technologies with better performance - including better safety and higher energy density - are drawing attention from battery vendors, automotive OEMs, material suppliers and investors. Geographically closer to the application market, complete and secure supply chain, superior performance, and potential for cost comparison or even reduction - all these factors drive dozens of players plunging into the solid-state battery business.
Major solid-state battery players globally
This report covers the solid-state electrolyte industry by giving a 10-year forecast till 2031 in terms of capacity production and market size, predicted to reach over $8B. A special focus is placed on winning chemistries, with a full analysis of the 8 inorganic solid electrolytes and of organic polymer electrolytes.
Solid-state electrolyte technology approach (source: IDTechEx)
Additionally, the report covers the manufacturing challenges related to solid electrolytes and how large companies (Toyota, Toshiba, etc.) try to address those limitations, as well as research progress and activities of important players. A study of lithium metal as a strategic resource is also presented, highlighting the strategic distribution of this material around the world and the role it will play in solid-state batteries. Some chemistries will be quite lithium-hungry and put a strain on mining companies worldwide.
Finally, over 20 different companies are compared and ranked in terms of their technology and manufacturing readiness, with a watch list and a score comparison.
Players discussed in this report:
24M, Applied Materials, BatScap (Bolloré Group) / Bathium, Beijing Easpring Material Technology, BMW, BrightVolt, BYD, CATL, Cenat, CEA Tech, China Aviation Lithium Battery, Coslight, Cymbet, EMPA, Enovate Motors, FDK, Fisker Inc., Flashcharge Batteries, Fraunhofer Batterien, Front Edge Technology, Ganfeng Lithium, Giessen University, Guangzhou Great Power, Guoxuan High-Tech Power Energy, Hitachi Zosen, Hyundai, Ilika, IMEC, Infinite Power Solutions, Institute of Chemistry Chinese Academy of Sciences, Ionic Materials, ITEN, Jiawei Long powers Solid-State Storage Technology RuGao City Co.,Ltd, JiaWei Renewable Energy, Johnson Battery Technologies, Kalptree Energy, Magnis Energy Technologies, Mitsui Metal, Murata, National Battery, National Interstellar Solid State Lithium Electricity Technology, NGK/NTK, Ningbo Institute of Materials Technology & Engineering, CAS, Oak Ridge Energy Technologies, Ohara, Panasonic, Planar Energy, Polyplus, Prieto Battery, ProLogium, Qing Tao Energy Development Co., QuantumScape, Sakti 3, Samsung SDI, Schott AG, SEEO, Solidenergy, Solid Power, Solvay, Sony, STMicroelectronics, Taiyo Yuden, TDK, Tianqi Lithium, Toshiba, Toyota, ULVAC, University of Münster, Volkswagen, Wanxian A123 Systems, WeLion New Energy Technology, Zhongtian Technology
Breakdown of the main parts of the report:
CHAPTER 1 - LATEST DISCUSSIONS FOR SOLID-STATE BATTERIES
CHAPTER 2 - BACKGROUND
CHAPTER 3 - DESIRE FOR ALL SOLID-STATE BATTERIES
CHAPTER 3 - SOLID-STATE BATTERIES
CHAPTER 4 - SOLID-STATE BATTERY MANUFACTURING
CHAPTER 5 - COMPANY ACTIVITIES AND PROFILES ON SOLID-STATE BATTERIES
Full Table of Contents below.