New IDTechEx report, "Materials Opportunities in Emerging Photovoltaics 2020-2040" is based on interviews by multi-lingual, PhD level IDTechEx analysts across the world and 20 years tracking the research and applications. Nearly $40 billion dollars envisaged in 2040 without colliding with commoditised silicon-in-glass "power station" business. Much premium-pricing of specialist materials.
See why profit from emerging PV will be disproportionately high - up to half the profit from all PV in 2040. Learn why over $10,000/W is currently paid for record 30% efficient lll-V compound PV in a designer watch, as an array on a satellite or surface of a high-altitude drone and lll-V is the basis of Toyota's solar car development. Tripled-efficiency indoor "lll-V" PV is newly on sale. Organic PV has jumped in efficiency, adding other uniques for other segments. Understand how copper-indium-gallium-diselenide PV created $2 billion yearly sales in only ten years. Further stellar growth powered by what improved materials?
Most emerging PV is thin film, flexible and some will be stretchable materials. Tightly-rollable PV in your mobile phone, aircraft skin, billions of Internet of Things nodes? Hundreds of millions more building facades need lightweight PV. What three technologies for PV paint? Retrofit on windows, boats, buses?
Whisper it quietly, but with silicon near its theoretical limits and taking massive areas of real estate - often prime agricultural land and lakes - emerging PV will eventually compete with some "power station" silicon by affordably providing the power in half the area and therefore being much more widely deployable and environmentally acceptable but this report is mainly about the huge opportunities in the run up to that.
The 225 page IDTechEx report, "Materials Opportunities in Emerging Photovoltaics" has executive summary and conclusions sufficient for busy people. Absorb 18 primary conclusions, 2020-2040 forecasts, roadmaps, price sensitivity, learning curves projected forward, gaps in the market, the application hierarchy. The introduction reveals the amazing virtuosity of PV already, important parameters, SOFT report, PV architectures, efficiency trends. New infograms compare PV options beyond silicon, production readiness, 13 examples of new formats/ locations, progress to user-customised PV materials, PV combinations.
Chapter 3 dives into inorganic compound semiconductor lll-V PV architectures, material advances of Boeing Spectrolab, the Russians, Lightricity, Sharp-Toyota and cost-reduction routes to volume lll-V sales researched by NREL. Chapter 4 concerns copper-indium-gallium-diselenide CIGS opportunities including cost reduction research, efficiency increase, elimination of cadmium. See activities of Ascent Solar, Flisom-EMPA, Manz, Renovagen, Solar Frontier and others. Chapter 5 on organic OPV materials opportunities reveals recently-transformed competitive situations, rapid efficiency and life potential, Armor-Opvius, Heliatek, materials suppliers, gaps in the market. Understand new molecule choices, fullerene elimination and special OPV barrier-layers.
Chapter 6 is a sober look at the now-fashionable perovskite PV balancing stellar efficiency gains with challenges in stability and use of lead. What is being done about it? Chapter 7 wraps up the basic chemistry options with dual technology such as perovskite on silicon or CIGS then wild card PV materials opportunities. Here are quantum dot toxicity issues, rectenna-array harvesting and 2D PV materials. Chapters 8 and 9 are a close analysis of the conductive pastes and barrier layers opportunity overall.