< Key Hightlight >
For nearly a century, the critical communications industry has relied on narrowband LMR (Land Mobile Radio) networks for mission-critical voice and low-speed data services. Over time, these systems have evolved from relatively basic analog radios to digital communications technologies, such as P25 (Project 25) and TETRA, to provide superior voice quality, end-to-end encryption and other advanced features. However, due to their inherent bandwidth and design limitations, even the most sophisticated digital LMR networks are unable to support mobile broadband and data-driven industrial IoT applications that have become vital for public safety, military, utilities, transportation, oil and gas, mining and other segments of the critical communications industry.
The 3GPP-defined LTE and 5G NR standards have emerged as the leading candidates to fill this void. Over the last decade, a plethora of dedicated, hybrid commercial-private and MVNO-based 3GPP networks have been deployed to deliver critical communications broadband capabilities – in addition to the use of commercial mobile operator networks – for application scenarios as diverse as PTT group communications, real-time mobile video surveillance, AR/VR (Augmented & Virtual Reality), wirelessly connected robotics, and automation in industrial environments. These networks range from nationwide public safety broadband platforms such as the United States' FirstNet (First Responder Network), South Korea's Safe-Net (National Disaster Safety Communications Network) and Britain's ESN (Emergency Services Network) to regional cellular networks covering the service footprint of utility companies and localized wireless systems in settings such as railroads, airports, maritime ports, oil and gas production facilities, remote mining sites, factories and warehouses.