< Key Hightlight >
As the availability of retired EV batteries will grow over the coming decade, IDTechEx forecasts the second-life EV battery market will be valued at US$4.2B by 2035.
Electric vehicle (EV) batteries are eventually retired at the end of their first-life, once they no longer meet the performance requirements for the EV. These Li-ion batteries could be recycled to reclaim the valuable and critical raw materials and see these reintroduced into new EV batteries. However, repurposing these batteries for second-life applications, prior to recycling, maximizes the value of the EV battery, extends their lifetime, and contributes to a battery circular economy. In some cases, some modules or cells could be replaced in a battery pack, seeing its first-life extended in an EV application. Repurposed second-life EV batteries, however, are used for stationary battery storage or lower power electromobility applications, which are use cases less demanding than that of EVs.
Market Activity
Repurposers in Europe and the US have continued to steadily increase their volume of second-life battery deployments. These stationary or mobile systems have primarily been installed for commercial and industrial (C&I) customers, who may be using them for optimization of renewable energy self-consumption, peak shaving, and EV charging. Some repurposers have also developed residential battery storage technologies. Some repurposers are developing larger containerized battery energy storage systems (BESS), which could be used for grid-scale applications. While IDTechEx believes China is already scaling up deployments of second-life batteries for telecom backup power applications, Europe continues to see the highest level of activity outside China with 20 identified repurposers developing second-life batteries in this region. This IDTechEx report provides discussion and analysis on key second-life battery technologies developed by repurposers and automotive OEMs, market shares by player, business models, funding, revenue generation mechanisms, and key partnerships with automotive OEMs.
Second-life EV Battery Costs and End-of-Life Battery Diagnostics
Significant cost reductions of first-life Li-ion BESS technologies seen in Europe and the US have, however, made it significantly difficult for repurposers to remain competitive on their systems' prices to customers. Second-life BESS technologies will have to be priced lower than first-life Li-ion BESS, given that EV batteries will have undergone degradation in their first life, and thus give rise to an inherently worse-performing second-life system.
Many factors can contribute to higher second-life BESS costs, including retired EV battery delivery logistics, battery materials and components, and the repurposing process itself, including battery grading times, disassembly, and reassembly. Repurposers will be aiming to reduce their costs across all these fronts. For example, several projects using semi-automated battery disassembly technologies are emerging, and if successful, could reduce the need for human intervention for certain repurposing steps, reducing labor costs. This report also discusses key advanced battery grading technologies being developed by a number of start-ups. These technologies could be in-vehicle end-of-life battery testing to determine battery State-of-Health (SOH) in the order of minutes rather than hours as per typical cycling techniques, reducing testing time and therefore cost.
This IDTechEx report analyzes repurposing costs (on a US$/kWh basis) based on data from primary interviews with key repurposers, provides a sensitivity analysis for different repurposing scenarios, and provides a techno-economic analysis of second-life BESS vs first-life Li-ion BESS, comparing costs and key performance metrics including energy density and cycle life.
Second-life and EV Battery Trends
Retired EV batteries can be repurposed at different depths of disassembly, namely at pack-, module-, or cell-level. Increasing the depth of disassembly takes longer and therefore incurs greater labor costs. However, this allows for the reassembly of the best performing modules or cells, thus creating a better-performing system. IDTechEx has identified that repurposers are typically adopting pack-level or module-level repurposing techniques and would expect this to continue. Further analysis on second-life BESS deployed by depth of disassembly is provided.
EV battery trends may also impact the economic feasibility of repurposing long-term. For instance, cell-to-pack (CTP) designs can improve the energy density of the battery pack and thus the driving range of the EV. However, these designs typically make greater use of structural adhesives, or spot-welding, which could require the use of solvents or heat to remove in the disassembly process, increasing the cost of disassembly. This IDTechEx report analyzes and provides thorough discussion on the many trends in EV battery technologies, designs, and chemistries (e.g., LFP vs NMC) and how these could influence the second-life EV battery market.
Second-life Battery Regulations
While there are some regulations on the recycling of batteries across different regions, few regulations exist that specifically address second-life EV batteries. Realizing the potential value of second-life batteries, regions including the EU, China and the US are now working on their regulatory frameworks to facilitate second-life batteries and repurposing. Since the draft version of the EU Battery Regulation made in December 2022, IDTechEx has observed a reasonable shift in terminology and recognition for repurposing batteries for second-life applications. However, a greater emphasis could still be made to incentivize players to repurpose instead of prematurely recycle these batteries. This IDTechEx report thoroughly examines and provides clear commentary on the key regulations and policies for second-life batteries in key regions, covering topics such as the EU Battery Passport, provision of EOL battery data across stakeholders, extended producer responsibility (EPR), and how policies may impact company activity.
Forecasts
This IDTechEx report also provides 10-year market forecasts for the second-life EV battery market by installations (GWh) by region (Europe, US, China, RoW), application, and by value (US$B) for the 2022-2035 period. Overall EV battery availability and LFP EV battery availability forecasts are provided by region and type of EV for the 2020-2035 period.
Company Profiles
This IDTechEx report includes 30+ company profiles, offering further insights into key second-life battery repurposers, advanced battery testing diagnosticians, and Li-ion battery recyclers participating, or looking to participate, in the second-life EV battery market.